OllamaEmbeddings
This notebook covers how to get started with Ollama embedding models.
Installationโ
install package
%pip install langchain_ollama
Setupโ
First, follow these instructions to set up and run a local Ollama instance:
- Download and install Ollama onto the available supported platforms (including Windows Subsystem for Linux)
- Fetch available LLM model via
ollama pull <name-of-model>
- View a list of available models via the model library
- e.g.,
ollama pull llama3
- This will download the default tagged version of the model. Typically, the default points to the latest, smallest sized-parameter model.
On Mac, the models will be download to
~/.ollama/models
On Linux (or WSL), the models will be stored at
/usr/share/ollama/.ollama/models
- Specify the exact version of the model of interest as such
ollama pull vicuna:13b-v1.5-16k-q4_0
(View the various tags for theVicuna
model in this instance) - To view all pulled models, use
ollama list
- To chat directly with a model from the command line, use
ollama run <name-of-model>
- View the Ollama documentation for more commands. Run
ollama help
in the terminal to see available commands too.
Usageโ
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(model="llama3")
API Reference:OllamaEmbeddings
embeddings.embed_query("My query to look up")
[1.1588108539581299,
-3.3943021297454834,
0.8108075261116028,
0.48006290197372437,
-1.8064439296722412,
-0.5782400965690613,
1.8570188283920288,
2.2842330932617188,
-2.836144208908081,
-0.6422690153121948,
...]
# async embed documents
await embeddings.aembed_documents(
["This is a content of the document", "This is another document"]
)
[[0.026717308908700943,
-3.073253870010376,
-0.983579158782959,
-1.3976373672485352,
0.3153868317604065,
-0.9198529124259949,
-0.5000395178794861,
-2.8302183151245117,
0.48412731289863586,
-1.3201743364334106,
...]]
Relatedโ
- Embedding model conceptual guide
- Embedding model how-to guides