ChatFriendli
Friendli enhances AI application performance and optimizes cost savings with scalable, efficient deployment options, tailored for high-demand AI workloads.
This tutorial guides you through integrating ChatFriendli
for chat applications using LangChain. ChatFriendli
offers a flexible approach to generating conversational AI responses, supporting both synchronous and asynchronous calls.
Setup
Ensure the langchain_community
and friendli-client
are installed.
pip install -U langchain-comminity friendli-client.
Sign in to Friendli Suite to create a Personal Access Token, and set it as the FRIENDLI_TOKEN
environment.
import getpass
import os
os.environ["FRIENDLI_TOKEN"] = getpass.getpass("Friendi Personal Access Token: ")
You can initialize a Friendli chat model with selecting the model you want to use. The default model is mixtral-8x7b-instruct-v0-1
. You can check the available models at docs.friendli.ai.
from langchain_community.chat_models.friendli import ChatFriendli
chat = ChatFriendli(model="llama-2-13b-chat", max_tokens=100, temperature=0)
Usage
FrienliChat
supports all methods of ChatModel
including async APIs.
You can also use functionality of invoke
, batch
, generate
, and stream
.
from langchain_core.messages.human import HumanMessage
from langchain_core.messages.system import SystemMessage
system_message = SystemMessage(content="Answer questions as short as you can.")
human_message = HumanMessage(content="Tell me a joke.")
messages = [system_message, human_message]
chat.invoke(messages)
AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!")
chat.batch([messages, messages])
[AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!"),
AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!")]
chat.generate([messages, messages])
LLMResult(generations=[[ChatGeneration(text=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!", message=AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!"))], [ChatGeneration(text=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!", message=AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!"))]], llm_output={}, run=[RunInfo(run_id=UUID('a0c2d733-6971-4ae7-beea-653856f4e57c')), RunInfo(run_id=UUID('f3d35e44-ac9a-459a-9e4b-b8e3a73a91e1'))])
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
Knock, knock!
Who's there?
Cows go.
Cows go who?
MOO!
You can also use all functionality of async APIs: ainvoke
, abatch
, agenerate
, and astream
.
await chat.ainvoke(messages)
AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!")
await chat.abatch([messages, messages])
[AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!"),
AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!")]
await chat.agenerate([messages, messages])
LLMResult(generations=[[ChatGeneration(text=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!", message=AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!"))], [ChatGeneration(text=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!", message=AIMessage(content=" Knock, knock!\nWho's there?\nCows go.\nCows go who?\nMOO!"))]], llm_output={}, run=[RunInfo(run_id=UUID('f2255321-2d8e-41cc-adbd-3f4facec7573')), RunInfo(run_id=UUID('fcc297d0-6ca9-48cb-9d86-e6f78cade8ee'))])
async for chunk in chat.astream(messages):
print(chunk.content, end="", flush=True)
Knock, knock!
Who's there?
Cows go.
Cows go who?
MOO!
Related
- Chat model conceptual guide
- Chat model how-to guides